If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=159
We move all terms to the left:
2x^2-(159)=0
a = 2; b = 0; c = -159;
Δ = b2-4ac
Δ = 02-4·2·(-159)
Δ = 1272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1272}=\sqrt{4*318}=\sqrt{4}*\sqrt{318}=2\sqrt{318}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{318}}{2*2}=\frac{0-2\sqrt{318}}{4} =-\frac{2\sqrt{318}}{4} =-\frac{\sqrt{318}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{318}}{2*2}=\frac{0+2\sqrt{318}}{4} =\frac{2\sqrt{318}}{4} =\frac{\sqrt{318}}{2} $
| 6d−4d=16 | | 4v÷2=10 | | 15x+10=5(x+2) | | (-3/4)m(-1/2)=2+(1/4) | | -6u-5=7 | | 9(x-1)=21.6 | | 6(a+9)=92.4 | | 8q−7q=14 | | 28.2=7c-4 | | x+(x*0.18)=12000 | | 0.12t2–6t+72=0 | | 0.12t^2–6t+72=0 | | 2n−n=12 | | 5x+4=34-x | | 3.4x-1.9=10-1.6x | | 10=50(0.85)x | | 10r−9r=9 | | N2-2n=15 | | 2y+7y=65 | | 5x−3x−12x=29−2−7 | | x+62+x-5+x=180 | | 3.8x+1600=14.44+40x | | 3.8x+1600=14.44 | | 24/x=18/3 | | 9x-20=8x+19 | | -28=-3+5u | | 38-4x=25-1.5x | | 7w-30=5(w-8) | | 8x−4=12x+8 | | 10q+10=5q+10 | | 119-y=209 | | x+(x*0.18)=8000 |